
Improving the Performance of Unitary Recurrent Neural Networks and
Their Application in Real-life Tasks

Ivan Ivanov
under the guidance of Li Jing

Massachusetts Institute of Technology
ivan@vankata.tech

Abstract

During a prolonged time execution, deep recurrent neural
networks suffer from the so-called long-term dependency
problem due to their recurrent connection. Although Long
Short-Term Memory (LSTM) networks provide a tempo-
rary solution to this problem, they have inferior long-term
memory capabilities which limit their applications. We use a
recent approach for a recurrent neural network model imple-
menting a unitary matrix in its recurrent connection to deal
with long-term dependencies, without affecting its memory
abilities. The model is capable of high technical results,
but due to insufficient implementation does not achieve the
expected performance. We optimize the implementation and
architecture of the model, achieving time performance up to
5 times better than the original implementation. Additionally,
we apply our improved model to three common real-life
problems: the automatic text understanding task, the speech
recognition task, and cryptoanalysis, and outperform the
widely used LSTM model.

Summary

Simulating human thinking on computer systems by means
of mathematical models is one of the most challenging
problems in the field of Computer Science. A recently devel-
oped such model is the artificial neural network, inspired by
the neuron structure in the human brain. A limiting factor
for the performance of this model is the depth of neural
connections that can be established while retaining learning
ability. We attempt to remove this limitation using a recent
neural network model known for achieving high theoretical
efficiency. We further optimize the implementation and archi-
tecture of that model and exhibit speed improvement up to 5
times better than the original implementation. In addition,
we use our improved model for real time text analysis,
speech recognition, and cryptoanalysis, and achieve higher
performance than the current state-of-the-art model.

Key words: neural network, recurrent, LSTM, unitary ma-
trix, automatic text understaning, speech recognition, cryp-
tography, vigenère

I. INTRODUCTION

Artificial neural networks are robust artificial intelligence
devices capable of solving complex problems in computer
vision, speech recognition, and natural language process-
ing. They present one of the greatest and most important
paradigms in programming [1]. Conventionally, a computer
receives direct instructions what operations to perform, and
complex problems are being decomposed into basic opera-
tions. In contrast, the approach of artificial neural networks
requires the computer to learn how to solve a problem after
being presented observational data as input. The notion of
neural networks was coined due to their resemblance of the
human nervous system (Figure 1a). Their learning ability
resides in the weighted connections between the different
layers in their structure. After initialization, these weights are
altered during the process of learning and generally improve
the performance of the network.

In the general case, to achieve sufficiently high accuracy
on a particular task, a neural network must undergo many
training iterations. For complex tasks such as speech recog-
nition and natural language processing, the network should
furthermore have a large number of weighted connections
and ability to access past data. To provide the network with a
memory ability, we introduce the recurrent connection which
is a cyclic connection between the inside layers (Figure 3).

If used for a prolonged period of time, the first and
last hidden layers further diverge from one another which
makes their connection unstable and prevents the network
from accurately connecting pieces of previous information,
impairing its learning ability. This is known as the long-
term dependency problem, also referred to in literature as
the exploding or vanishing gradient problem [4]. Common
attempts, aiming to solve the problem, have decreased the
computational time of the recurrent neural network, but
imposed serious limitations on its memory ability.

An approach proposed by Jing et al. in 2016 manages to
avoid the problem, without affecting the memory ability, by
keeping the recurrent connection weight matrix in a unitary
state [5]. However, the implementation of Jing et al. does
not meet the theoretically expected performance due to low
degree of parallelism. This paper proposes changes to the
algorithms by Jing et al. that provide an equivalent com-
putation efficiency, but are highly parallelizable. Section II
presents current common approaches dealing with the long-



Improving the Performance of Unitary Recurrent Neural Networks and Their Application in Real-life Tasks

(a) An analogy between the artificial neural network and the human nervous system [2]. Both
A (a biological neural cell) and B (an artificial neuron) take several inputs and produce a single
output based on a particular activation function. Additionally, C (a biological neural network)
and D (an artificial neural network) illustrate the interneuronal connections, highlighting their
similar structure (Maltarollo, 2013).

(b) A model of a simple recurrent neural
network (RNN) [3]. The input layer is
marked with x, the output layer is marked
with h, the hidden layer (one in this case)
is marked with A (Olah, 2015).

term dependencies problem, and explains in greater detail
the unitary RNN model we are optimizing. In Section III, we
elaborate on the performed optimizations. In Section IV, we
provide standard benchmarks of our improved implementa-
tion. In Section V, we apply our improved implementation to
common problems from the real world such as the automatic
text understanding task, the speech recognition task, and the
cryptoanalysis task, and analyze the achieved results. We
publish our code under the GNU General Public License
v3.0 on GitHub, accessible here.

II. BACKGROUND

In this section, we discuss the previous research in the
field of recurrent neural networks (RNNs), presenting the
gated and the unitary model.

A. The Artificial Neural Network

Artificial neural networks are organized in layers: the
input, hidden, and output layer which respectively accept
input data, process it, and store the produced result. For
convenience, we present the interlayer connections in the
form of matrices whose elements are the weight values. In
a standard model of a network, input data is first presented
to the input layer, then subjected to linear combination with
the interlayer weight matrices, and at the end the final result
is stored in the output layer. In each neuron cell, the pieces
of data are combined with a certain bias value, stored in the
cell, also undergoing adjustments, and an additional non-
linear activation function is applied to them to avoid fitting
to the input data. During training, the result produced by
the neural network is compared to the expected one and the

weight values are adjusted based on the discrepancy, so that
the next time when the network is presented with similar
data as input, it would produce a more accurate result. This
series of steps is repeated until the network achieves the
desired accuracy. A sample step from the training process is
presented on Figure 2.

B. The Concept of Recurrence

The recurrent neural network (RNN) is a specific type of
artificial neural network described by a recurrent connection
present in each of its hidden layers [7]. This connection
allows for some of the output of the network to be conserved
and then used as input during the next iteration. In this
way, the functioning of the network becomes dependent on
the previously processed data which creates the memory
ability. This approach is especially useful when processing
sequential data with dependencies, such as text and speech,
as it makes the network able to consider these in its working
process [8]. Typical use cases for this type of network
include speech recognition and prediction, text analysis and
translation. An unrolled model of a recurrent neural network
is presented on Figure 3.

C. Backpropagation and Gradient Descent

One of most widely used models for training of a neural
network is the gradient descent algorithm [1]. It aims to
reduce the discrepancy between the produced and the ex-
pected answer, also defined as the cost function, by adjusting
the specific weights of the connections and the biases in
the neuron cells (Figure 4). To compute the exact change in
each of these properties, it uses the backpropagation function

2

https://github.com/vanjo9800/EUNN-tensorflow


Improving the Performance of Unitary Recurrent Neural Networks and Their Application in Real-life Tasks

(a) Initial weight values

(b) Updated weight values

Fig. 2: A neural network learning mechanism [6]. The
initially generated weight values are updated based on the
discrepancy between the produced and expected result. Thus,
when running the network with the same data as input, the
produced result is closer to the expected one (Miller, 2015).

that determines how much each connection, or bias value
has contributed to the final result and how much of that
led to the difference in the final answers. Currently, many
variations of the gradient descent algorithm exist such as
Adam, RMSprop, etc. that adjust the network in different
ways, based on the gradient of the cost function. However, in
the base of all lies the backpropagation function calculating
the gradient [9].

D. The Long-Term Dependencies Problem and Long Short
Term Memory (LSTM) Networks

During prolonged time execution, the unrolled RNN model
consists of a significantly big number of hidden layers which
makes it hard for the backpropagation function to properly
compute the gradient values [10]. Thus, some parameters
receive gradient closer to zero, while others a value close to
infinity. This leads to two problems known as the vanishing
and exploding gradient that together form the long-term de-
pendencies problem which stands a limit for the performance
of recurrent neural networks. The Long Short-Term Memory
(LSTM) RNN model is one the current best solutions to the

Fig. 3: A recurrent neural network (RNN) model and its
representation in conventional means through time [3]. The
input layer is marked with x, the output layer is marked with
h, the hidden layer (only one in this case) is marked with
A, and the moment in time is marked by t (Olah, 2015).

Fig. 4: The concept behind the gradient descent algorithm
[1]. It aims to reduce the cost function (the green ball) by
adjusting its parameters: the weights and the biases (Nielsen,
2017).

long-term dependencies problem, first proposed by Hochre-
iter et al. [11]. The approach introduces three additional
structures in the RNN cells, called gates (Figure 5). They
utilize the sigmoid function (producing values between 0
and 1) to filter the amount of data flowing through the cell
and cut some of the connections between the hidden layers.
However, this method also limits the memory ability of the
network, which in turn lowers its accuracy on important
computational tasks [3]. Therefore, LSTM networks present
only a partial solution to the long-term dependencies problem
because by trading computational intensity they lower their
working accuracy.

E. The Concept of the Unitary Matrix

A RNN model dealing with the problem that keeps its
recurrent connection weight matrix in a unitary state is
first proposed by Arjovsky et al. [12]. The approach is
based on the fact that all eigenvalues of unitary matrices
have absolute values of unity and therefore can be safely
raised to large powers, handling long-term dependencies.
The main challenge faced by this RNN model becomes
finding an efficient method to retain unity throughout the
training process. In the solution proposed by Arjovsky et

3



Improving the Performance of Unitary Recurrent Neural Networks and Their Application in Real-life Tasks

Fig. 5: Model of a LSTM network [3]. From left to right,
the three rectangles inside the center cell marked by the σ
signs show the input, forget, and output gates (Olah, 2015).

al., the recurrent connection weight matrix uses only O(N )
parameters which spans an insufficient part of the O(N2)-
dimenstional space of N×N unitary matrices. This imposes
serious constraints on values for the recurrent connection
matrix and limits the learning abilities of the network. In
attempt to resolve this, a full-space coverage method is
proposed by Wisdom et al. [13]. In Wisdom et al.’s RNN
model, the recurrent connection weight matrix can cover the
whole space of unitary matrices, but at the expense of N -
dimenstional matrix multiplication resulting in computational
complexity of O(N3).

A mediate solution expanding the operational space of
the recurrent connection weight matrix with minor increase
in the complexity is proposed by Jing et al. [5]. Jing et
al.’s RNN model uses two decompositions of the unitary
recurrent connection weight matrix into 2 × 2 rotation ma-
trices arranged in block diagonal matrices (Figure 6). Each
block diagonal matrix is further simplified into two vectors
representative of the weighted connections: one containing
the elements from the diagonal, and a second containing the
remaining non-zero elements. These vectors are multiplied
element by element with the data vector and produce the
end result of the connection.

Even though Jing et al.’s model uses full-space coverage
and operation optimization, its implementation is not effi-
ciently parallelized. As a result, it does not match the theo-
retically predicted high performance. In the current research,
our goal is to propose step-wise refinements and enrichments
of the implementation towards the theoretical efficiency of
model.

Fig. 6: Jing et al.’s unitary model consists of two full-space
coverage decompositions of the unitary matrix in terms of
2× 2 rotation matrices marked by the points of intersection
[5]. The simple net model (a) presents a rectangular arrange-
ment consisting of two repeating patterns of columns. The
lightweight model (b) is an optimized version of the simple
net model following the Fast Fourier Transformation (FFT)
decomposition method (Jing et al., 2016).

III. OPTIMIZATIONS

In the process of improving the implementation, we focus
on the following aspects: parallelizing serial procedures, re-
placing memory and time consuming operations with lighter
alternatives, and expanding the range of acceptable input
parameters.

A. Implementing Parallelization

Our first step in improving the implementation is to turn
the serial code into a parallel one. The idea of parallelization
finds increasing use in neural network algorithms because
the neurons in a single layer operate independently of one
another. For parallelization, we use the TensorFlow library as
it is developed especially for devices with multiple threads
such as GPUs, and all of its functions are implemented to
run in parallel [14]. As its main data type the library uses
the tensor data structure which in the context of TensorFlow
it can be viewed as a multidimensional array.

In the original implementation, the construction of the
block diagonal matrices and their efficient multiplication
(Figure 7 and Figure 8), two important operational optimiza-
tions of the algorithm, requires the rotation matrices and the
data vector to be permuted based on the hyperparameters
of the RNN cell. A downside of this approach is that the
generation of the necessary permutations for this operation
is implemented via interdependent for loops that cannot
be parallelized efficiently. For the simple net decomposition
model, we generate the block diagonal matrices as presented
on Figure 7b and perform the optimized multiplication
method from the original approach as shown on Figure 7d
and Figure 7c. Based on the visual representations of the
matrices on Figure 7b and Figure 7c, we reorder the vectors
according to Figure 7d. Therefore, based on the order of the
vectors presented on Figure 7d, we can derive the general
form of the required permutations as:

4



Improving the Performance of Unitary Recurrent Neural Networks and Their Application in Real-life Tasks

(a)

c1 s1
−sn/2+1 cn/2+1

. . .
. . .

cn/2 sn/2

−sn cn




.

x1
x2

...

...
xn−1

xn




(b)

x1c1 + x2s1

x2cn/2+1 − x1sn/2+1

...

...
xn−1cn/2 + xnsn/2

xncn − xn−1sn




(c)

Fx = v1 ∗ x1 + v2 ∗ x2
v1 = (c1, cn/2+1, . . . , cn/2, cn)
v2 = (s1,−sn/2+1, . . . , sn/2, sn)
x1 = (x1, x2, . . . , xn−1, xn)
x2 = (x2, x1, . . . , xn, x2n−1)

(d)

Fig. 7: The simple net decomposition model of the unitary matrix [5]. Each point of intersection in (a) is a 2× 2 rotation
matrix. The rotation matrices are grouped in columns and each column presents the block diagonal matrix in (b). The
multiplication process of this matrix with a data vector is illustrated on (b). The result of the multiplication is presented
on (c). The mathematical formula for the optimized multiplication together with the four vector structures are given in (d).
Based on the result (c) and the vector structures (d) we can determine the general form of the required permutations.

Data vector shuffle pattern:
(applied to x2)

(1, 0, 3, 2, . . . , 2k − 3, 2k − 4, 2k − 1, 2k − 2)

Rotation matrices shuffle pattern:
(applied to both v1 and v2)

(0, k, 1, k + 1, . . . , k − 2, 2k − 2, k − 1, 2k − 1)

(1)

For efficient parallelization of the generation of the permu-
tations, we propose a method replacing the hardly paralleliz-
able for loops with reshaping, reversing, and transposing
tensor operations that can be divided in independent parts and
therefore easily parallelized. For the data vector permutation
generation, we reshape the initial array into two columns,
reverse the columns, and reshape the array back into a single
row (2). For the rotation matrices permutation generation, we
reshape the initial array into two rows, transpose the array,
and reshape it back into a single row (3).

[a0, a1, . . . , a2k−2, a2k−1] 7→

7→

 a0 a1
...

...
a2k−2 a2k−1

 7→
 a1 a0

...
...

a2k−1 a2k−2

 7→ (2)

7→ [a1, a0, . . . , a2k−1, a2k−2]

[a0, a1, . . . , a2k−2, a2k−1] 7→

7→
[
a0 . . . ak−1

ak . . . a2k−1

]
7→

 a0 ak
...

...
ak−1 a2k−2

 7→ (3)

7→ [a0, ak, . . . , ak−1, a2k−1]

For the lightweight decomposition model, we generate the
block diagonal matrices as presented on Figure 8b and per-
form the optimized multiplication method from the original
approach as shown on Figure 8d and Figure 8c. Based on
the visual representations of the matrices on Figure 8b and
Figure 8c, we reorder the vectors as illustrated on Figure 8d.
Therefore, based on the order of the vectors presented on
Figure 8d, we can derive the general form of the required
permutations as:

Data vector shuffle pattern:
(applied to x2)

(k, . . . , 2k − 1, 0, . . . , k − 1) for s = 0

(k/2, . . . , k, 0, . . . , 2k − 1, k/2, . . . , 3k/2− 1) for s = 1
. . .

(1, 0, . . . , 2k − 1, 2k − 2) for s = log2s− 1

Rotation matrices shuffle pattern:
(applied to v1 and v2)
(0, 1, . . . , 2k − 2, 2k − 1) for s = 0

(0, 2, . . . , 2k − 2, 1, 3, . . . , 2k − 3, 2k − 1) for s = 1
. . .

(0, k, . . . , k − 1, 2k − 1) for s = log2s− 1

(4)

5



Improving the Performance of Unitary Recurrent Neural Networks and Their Application in Real-life Tasks

(a)

c1 s1
c2 s2

−sn/2+1 . . .

. . . sn/2

−sn−1 cn−1

−sn cn




.

x1
x2

...

...
xn−1

xn




(b)

x1c1 + x3s1

x2c2 + x4s2

...

...
xn−1cn−1 − xn−3sn−1

xncn − xn−2sn




(c)

Fx = v1 ∗ x1 + v2 ∗ x2
v1 = (c1, c2, . . . , cn−1, cn)

v2 = (s1, s2, . . . ,−sn−1,−sn)
x1 = (x1, x2, . . . , xn−1, xn)
x2 = (x3, x4, . . . , xn−3, xn−2)

(d)

Fig. 8: The lightweight decomposition model of the unitary matrix [5]. Each point of intersection in (a) is a 2× 2 rotation
matrix. The rotation matrices are again grouped in columns and each column presents the block diagonal matrix in (b). The
multiplication process of this matrix with a data vector is illustrated on (b). The result of the multiplication is presented
on (c). The mathematical formula for the optimized multiplication together with the four vector structures are given in (d).
Based on the result (c) and the vector structures (d) we can determine the general form of the required permutations.

Based on the similarity between the general forms of the
permutations used in the simple net decomposition model
and the lightweight decomposition model, we use similar
strategy for implementing the parallelization scheme of the
latter. For the generation of the data vector permutation, we
reshape the initial array into two columns whose elements
are arrays of length x = N/2s+1, depending on the column
number s. Then, we reverse these columns and reshape the
array back to its original shape (5). For the generation of the
second permutation, we reshape the initial array into 2s rows
depending on the column number s. Then, we transpose the
array and reshape it back to its original shape (6).

[a0, a1, . . . , a2k−2, a2k−1] 7→

7→

 [a0, . . . , ax−1] [ax, . . . , a2x]
...

...
[a2k−3x−1, . . . , a2k−2x−1] [a2k−2x, . . . , a2k−1]

 7→
(5)

7→

 [ax, . . . , a2x] [a0, . . . , ax−1]
...

...
[a2k−2x, . . . , a2k−1] [a2k−3x−1, . . . , a2k−2x−1]

 7→
7→ [ax, . . . , a2x, a0 . . . , ax−1, . . . , a2k−3x−1, . . . , a2k−2x−1]

[a0, a1, . . . , a2k−2, a2k−1] 7→

7→


a0 a1 . . . ad−2 ad−1
ad . . . a2d−1
...

...
a2k−2d−1 . . . a2k−d−2
a2k−d−1 a2k−d . . . a2k−2 a2k−1

 7→
(6)

7→


a0 ad . . . a2k−2d−1 a2k−d−1
a1 . . . a2k−d
...

...
ad−2 . . . a2k−2
ad−1 a2d−1 . . . a2k−2−d a2k−1

 7→
7→ [a0, ad, . . . , a2k−d−1, a1, ad+1 . . . , ad−1, a2d−1, . . . , a2k−1]

With this, we have transformed the inefficient serial gener-
ation of permutations, necessary for the approach, into highly
parallelizable TensorFlow operations and have accomplished
our goal of implementing a parallelization architecture. A
comparison between the original implementation and our
improved implementation is presented on Figure 9.

B. Reducing Operations Complexity

Even though we optimize the generation of the template
permutations, this process is executed only once during the
initialization of the RNN model. As a result, its optimization
alone would not lead to noticeable improvements in the long-
run operation of the network. However, our improvements
can prove extremely useful in the the rotation matrices and
data vectors permutation process which is executed multiple

6



Improving the Performance of Unitary Recurrent Neural Networks and Their Application in Real-life Tasks

Algorithm 1 Original implementation for the simple net model
permutations [5]
Input: hidden layer size H
Output: data vector shuffle pattern ind1, rotation matrices
shuffle pattern ind2

function GENPERMUTATION(H)
ind1 ← {0, . . . ,H − 1}
for i from 0 to H − 1 do

for even i, ind1[i]−= 1
for odd i, ind1[i]+= 1

end for
ind2 ← {}
for i from 0 to H/2 do

ind2 += {i, i+H/2}
end for
return ind1,ind2

end function

Algorithm 2 Suggested implementation for the simple net
model permutations
Input: hidden layer size H
Output: data vector shuffle pattern ind1, rotation matrices
shuffle pattern ind2

function GENPERMUTATION(H)
ind1 ← {0, . . . ,H − 1}
ind1 ← reshape(ind1,[-1,2])
ind1 ← reverse(ind1,[1])
ind1 ← reshape(ind1,[-1])
ind2 ← {0, . . . ,H − 1}
ind2 ← reshape(ind2,[2,-1])
ind2 ← transpose(ind2,0)
ind2 ← reshape(ind2,[-1])
return ind1,ind2

end function

Algorithm 3 Original implementation for the lightweight
model permutations [5]
Input: column number, s, hidden layer size H
Output: data vector shuffle pattern ind1

function DATAPATTERN(t)
if t == 0 then: return [1,0]
else

ind1 ← {2t,. . .,2t+1 − 1,0,. . .,2t − 1}
list1 ← dataPattern(t− 1,H)
for i from 0 to t do:

ind1 += {list1[i], list1[i] + 2t}
end for
return ind1

end if
end function

Input: column number s, hidden layer size H
Output: rotation matrices shuffle pattern ind2

function MATRICESPATTERN(s,H)
for j from 0 to 2s do

ind2 += {j, j + 2s, . . . ,H}
end for
return ind2

end function

Algorithm 4 Suggested implementation for the lightweight
model permutations
Input: column number s
Output: update vector shuffle pattern ind1, rotation matrices
shuffle pattern ind2

function GENPERMUTATION(s)
ind1 ← {0, . . . , s− 1}
ind1 ← reshape(ind1,[-1,2,N/(2s+1)])
ind1 ← reverse(ind1,[1])
ind1 ← reshape(ind1,[-1])
ind2 ← {0, . . . , s− 1}
ind2 ← reshape(ind2,[2p,-1])
ind2 ← transpose(ind2,0)
ind2 ← reshape(ind2,[-1])
return ind1, ind2

end function

Fig. 9: A comparison of the permutation generation functions in the original and the suggested implementation

times for each RNN cell during a single iteration. In the
original implementation, the permutation is accomplished
through the use of memory and time consuming functions
such as the gather function from the TensorFlow library,
used for rearranging a given tensor according to a particular
permutation. As the function is designed for operation in
the general case with an arbitrary permutation as parameter,
it employs additional resources which increase the runtime
memory consumption of the implementation without ac-
counting for sufficient performance change. For example,

in its working process the gather function stores multiple
copies of each the different layers of the tensor object which
significantly increases the memory usage especially if large
tensor objects are used. The context in which the operation
is used is presented in Algorithm 5.

Using our previously developed methods for permutation
generation, we can completely avoid the gather function by
applying the permute operations directly to the tensor object
instead of to additional arrays, as shown in Algorithm 6.
Therefore by introducing this method we accomplish our

7



Improving the Performance of Unitary Recurrent Neural Networks and Their Application in Real-life Tasks

Algorithm 5 Original permute function
Input: update vector x, permutation ind
Output: shuffled update vector step3

function PERMUTE(x, ind)
step1 ← transpose(x)
step2 ← gather(step1,ind)
step3 ← transpose(step2)
return step3

end function

Algorithm 6 Our permute function
Input: update vector x
Output: shuffled update vector x

function PERMUTE(x)
x ← reshape(x,[-1,2])
x ← transpose(x,1)
x ← reshape(x,[-1])
return x

end function

goal of reducing the complexity of used operations.

C. Expanding Hyperparameter Range

As one of the goals of this research is to apply the designed
model in practice, the provided RNN implementation should
be compatible with a wide variety of hyperparameters. How-
ever, the original implementation has significant limitations
on its range of parameters. In particular, the simple net
decomposition model is defined only for even number of
columns and even hidden layer size and the lightweight
decomposition model is only applicable for hidden layer
sizes which are powers of two. These are important ar-
chitecture problems that limit the possible configurations
of the RNN cell and our contribution is to improve the
architecture of Jing et al.’s model and expand its range of
acceptable hyperparameters. This enhancement will not lead
to better performance results, but will make the model more
customizable and therefore more applicable in the real world.

Our approach for expanding the range of acceptable
hyperparameters focuses on changing the arrangement of
the rotation matrices in the block diagonal matrices based
on the hyperparameters characteristics. Thus, for an odd
hidden layer size, or odd number of columns, the rotation
matrices in some of the block diagonal matrices shift their
positions up, or down, leaving an empty row, or column.
Then, upon multiplication with the data vector, the empty
rows of these matrices are added to the non-empty rows
of the remaining matrices and form the final product. For
expanding the range of acceptable hyperparameters for the
lightweight decomposition model, we applied Genz et al.’s
method for generating random orthogonal matrices which is
used by Jing et al. for the lightweight decomposition model

itself [15]. The method consists of adding an extra column
(block diagonal matrix) to the decomposition model for the
additional rotation matrices and filling its empty cells with
control values of 0 and 1. Then, upon multiplication the
control values are added to the rotation matrices values in the
other block diagonal matrices and produce the final product.

However, with these improvements, expanding the hyper-
parameter range of the lightweight decomposition, we have
increased the computational time of the RNN model. This is
a problem we would like to address in the future by finding a
more effective way for expanding the hyperparameter range.

IV. BENCHMARK AND ANALYSIS

In this section, we test our implementation of Jing et
al.’s model on two standard benchmarking tasks for RNNs,
comparing its performance to the original implementation,
as well as to other commonly used RNN models. In the end,
we include a brief analysis of the results.

The first benchmarking task we use is the memorization
task, defined by [11], [12], and [8]. It tests the basic ability
of the RNN to recall information presented T steps earlier in
time. For better representation of the learning behavior, we
draw a baseline marking the memoryless strategy. The second
benchmarking task upon which our improved implementation
is tested is the pixel-permuted MNIST task which assesses
the learning ability of the network in greater detail. The
testing process consists of feeding the network with pixel-
by-pixel handwritten digit samples from the MNIST dataset
and determining the answer based on the probability distri-
bution, quantifying the digit prediction returned at the end.
For creating more long-range patterns and therefore higher
complexity, we additionally apply a fixed permutation to each
sample before feeding it into the network.

On the memorization benchmark, both unitary implemen-
tations express sufficient learning behavior beating the base-
line. Our improved implementation outperforms the original
one by a factor of 5 in terms of execution time (Figure 10a).
In particular cases during the process of testing, the time
performance improvement reached up to 12 times better than
the original implementation. In these, the original imple-
mentation used a large portion of the GPU cache memory,
probably due to the gather function, which was absent
in our implementation. In the general case, our enhanced
implementation performs at least 20% faster than the original
implementation for all test cases. This could be due to low
utilization level of the GPU eventually lowering the amount
of computational cores that can be used for paralleliza-
tion.Compared with the LSTM model, our improved unitary
implementation performs better both in terms of time and
accuracy, as the LSTM network barely reaches the baseline
and is not able to beat it. Additionally, tests of our improved
implementation in an environment under load reveal stable
execution time making our implementation of the unitary
model highly applicable in academic environments where
multiple algorithms are often executed on a single machine.
This behavior can be also explained by the replacement of

8



Improving the Performance of Unitary Recurrent Neural Networks and Their Application in Real-life Tasks

Lower is better

(a) Results of the two unitary implementations and the LSTM model
on the memorization task performed with a decay rate of 0.5 and
learning rate of 0.001. For viewing the cost function, we use the cross
entropy distribution; the lower the cross entropy value, the better is
the learning performance of the model.

Higher is better

(b) Results of the LSTM model and our improved implementation on
the pixel-permuted MNIST task performed with a decay rate of 0.9
and learning rate of 0.0001.

the previously used gather function which reduced the cache
memory dependency of our improved implementation.

On the pixel-permuted MNIST task, our unitary model
implementation achieves higher accuracy compared to the
LSTM model in its initial iterations and later converges to
its maximum accuracy of around 80%. The LSTM model
implementation demonstrates slower learning pattern and
is not able to reach the accuracy of our unitary model
implementation for the given time interval. Therefore, our
improved unitary model implementation is considered more
efficient and should present similar results when executed in
practice.

V. TESTS ON PROBLEMS FROM REAL LIFE

This section evaluates the new implementation with sev-
eral tasks from the real world assessing the network’s ap-
pliance in reality. Due to content and time constraints, this
paper presents only the most significant tests and graphics,
conducted before the date of submission. The full test data
and the most recent results are published in the GitHub Wiki
of the code repository, accessible here.

A. Reading Comprehension: The bAbI Dataset

As a proof of concept for the performance of the improved
model on the automatic text understanding task, we run our
enhanced implementation on the bAbI dataset provided by
Facebook [16]. It consists of 150 words used in 20 different
tasks for automatic text understanding and reasoning each
testing different capabilities of the RNN model.

As the automatic text understanding task is more com-
plicated than the memorization and pixel-permuted MNIST
benchmarks, certain preparation of the input data is required
before its insertion into the RNN (Figure 11 and 12).

(a) A sample test from Task 1 in the bAbI dataset [16] (Weston,
2015).

Mary went to ... office Where is
0 1 2 ... 9 10 11

(b) Dictionary of the vocabulary used.

Where is Mary? −→ (10, 11, 0)y
([0,0,...,1,0], [0,0,...,0,1], [1,0,...,0,0])

(c) Mapping the question into the one-hot vector data type that is
inserted into the network.

Fig. 11: The words from the test case are inserted into a
dictionary and each of them receives its unique numeric code.
The statements are reduced into number arrays which are
later transferred into one-hot vectors.

For maximizing the accuracy of the neural network, we
have placed our model in Mostafa Samir’s TensorFlow
implementation of DeepMind’s Differential Neural Computer
(DNC) [17]. The DNC is a device that strengthens the mem-
ory and learning capabilities of a RNN model by memorizing
particular states of the network and retrieving them when
necessary. The implementation originally uses the standard

9

https://github.com/vanjo9800/EUNN-tensorflow/wiki


Improving the Performance of Unitary Recurrent Neural Networks and Their Application in Real-life Tasks

1 →
0 →
0 →
...
0 →
0 →
0 →

→ 0.24 (24%)
→ 0.07 (7%)
→ 0.18 (18%)
...
→ 0.56 (56%)
→ 0.01 (1%)
→ 0.02 (2%)

Mary
went
to
...
office
Where
is

Fig. 12: The one-hot vectors are fed consecutively into the RNN and at each iteration an output vector containing a probability
distribution, quantifying the word index in the created dictionary, is produced. When the input vector codes a question, the
word with the highest probability is returned.

TensorFlow implementation of an LSTM RNN cell, but due
to the compatibility of our implementation, we are able to
replace the LSTM cell and conduct the tests with our model.

Task Our Approach LSTM
1 - Single Supporting Fact 50.5% 52.0%
2 - Two Supporting Facts 31.8% 15.1%
3 - Three Supporting Facts 25.4% 19.1%
4 - Two Arg. Relations 71.2% 73.5%
5 - Three Arg. Relations 67.1% 34.4%
6 - Yes/No Questions 52.9% 50.5%
7 - Counting 71.3% 56.5%
8 - Lists/Sets 68.2% 38.8%
9 - Simple Negation 61.8% 63.8%
10 - Indefinite Knowledge 46.0% 45.1%
11 - Basic Coreference 72.3% 74.1%
12 - Conjunction 73.4% 76.1%
13 - Compound Coreference 94.0% 83.0%
14 - Time Reasoning 36.4% 18.6%
15 - Basic Deduction 55.0% 21.2%
16 - Basic Induction 48.8% 32.2%
17 - Positional Reasoning 48.4% 50.6%
18 - Size Reasoning 89.5% 89.2%
19 - Path Finding 7.9% 6.6%
20 - Agents Motivations 95.5% 90.6%
Mean Performance 58.4% 49.6%

TABLE I: Results of the LSTM implementation and our
improved implementation on the bAbI dataset. The imple-
mentations are run with hidden layer size of 256 and our
improved implementation uses the simple net decomposition
model with 2 columns. As our goal is to use as little data
as possible and achieve high performance, in the training
procedure the implementations were presented only with the
standard 10000 training samples.

The results show that our improved implementation per-
forms better than the LSTM, achieving mean accuracy
of over 50%. It reaches up to 2 times greater accuracy
compared to the LSTM implementation on tasks requiring
long-range pattern detection such as Two/Three Supporting

Facts, Three Arg. Relations, Basic Deduction, and Basic
Induction highlighting its enhanced long-term dependency
management. Additionally, our unitary model implementa-
tion also outperforms the LSTM model implementation on
the real-life search problem included in the Path finding
task. On the remaining tasks, the two implementations share
similar performance with the LSTM doing slightly better
on tasks with low memory dependency and more factors
affecting the answer.

The hyperparameters in the current environment consist of
the batch size, the learning rate, the decay rate, the hidden
layer size, the type of representation used by the unitary
model, and the number of columns in the net if the simple
net decomposition model is used, but due to the usage of
the DNC architecture, only the last three affect the RNN
cell. Additional tests with small adjustments in these three
hyperparameters were performed and uncovered that the best
performing configuration is the one presented in Table I:
hidden layer size of 256 and simple net decomposition model
with 2 columns. In all configurations, our unitary model
implementation achieves accuracy between 50% and 58.4%
which is higher than the LSTM.

B. Speech Recognition

The second famous sequential data real-life task on which
we test our implementation is speech recognition, whose
underlying logic is similar to the one of text understanding.
As proof of concept, we have selected the newly released
Google Speech Commands Dataset consisting of 65,000
WAVE audio files of people saying thirty different words
[18]. The dataset is small which allows us to train our models
more, but at the same time assesses all the necessary ele-
ments for speech recognition. It has been originally designed
for basic feedforward and convolutional neural networks, but
as it works with the standard TensorFlow Neural Network
model, we are able to replace it with our implementation
and the standard LSTM one. The results from the conducted
tests are presented on Figure 13.

10



Improving the Performance of Unitary Recurrent Neural Networks and Their Application in Real-life Tasks

Higher is better

(a)

Lower is better

(b)

Fig. 13: Results of two variations of the unitary implementation (EURNN) and the LSTM model on the speech recognition
task performed with a decay rate of 0.9 and learning rate of 0.0001. The unitary configuration used hidden layer size of 40
and the complex domain for weights. The LSTM configuration used hidden layer size of 64.

The results clearly outline the verdict from our previous
task: the unitary model performs much better than the LSTM
one, achieving higher accuracy for less iterations. In this
case, it even does not fall below on a single instance, despite
the LSTM using larger hidden layer size which gives it
multiple times the parameters of the unitary model. This
once again shows the superiority of the unitary model to the
conventional LSTM one as a better RNN model for practical
tasks.

However, the fact that the unitary model performs better
than the LSTM, does not mean it copes well with the
task. As we can see, the achieved accuracy of both tested
configurations is less than 20% which shows that both
models are quite ineffective for such a task. We clearly see
that the model with bigger depth performs slightly better,
giving lower cross entropy values, which means that with
even more parameters and depth it may give the desired
accuracy. However, this would imply much more time and
memory resources and would make the process ineffective.
This means that despite the unitary model’s superiority, it
appears not to be as usable for speech recognition as for text
understanding in practice.

C. Cryptoanalysis

Seeing the limitations of the unitary model on the speech
recognition task and its benefits on the text recognition task,
we assess its performance on the quickly developing and
highly important for our society topic of cryptoanalysis.
Neural networks are increasingly used for such tasks because
of the non-linearity that they employ and which stays in
the basis of many cryptographic ciphers. Additionally, neural
networks are able to learn and model functions which also
makes them able to encrypt, or decrypt messages. While

the description above applies to all types of artificial neural
networks, RNNs are specifically able to learn better some
patterns due to their memorizing ability. Therefore, they are
expected to learn faster and produce higher results in the
cryptographic operations. In our use case, we have taken two
relatively simple ciphers, Vigenère and Autokey, and we have
trained an LSTM network and our implementation to decrypt
messages, encrypted with them. For testing, we have used
Sam Greydanus’ implementation which utilizes an LSTM
network cell [19]. It again follows the standard TensorFlow
neural network model, so we are able to quickly configure
it for our own implementation. The results from the test are
presented on Figure 14.

The results again show the better performance of the
unitary model compared to LSTM. It is notable that the
unitary model manages to reach an accuracy of 92% for the
given number of training iterations on the Vigenère cipher
while the LSTM hardly manages to reach half of it, 50%.
This means that the unitary model will have much better
application on real-life cryptographic tasks compared to the
LSTM one. However, it is important to mention that despite
its higher accuracy, the unitary model took much more time
and memory resources for its work than the LSTM. This
outlines a possible limitation for its use in devices with lower
computational power as it will function ineffectively on them.

On the second cipher, the Autokey, which is a little more
complex than Vigenère, both networks struggle to get an
accuracy over 35% which is quite low for the task. Therefore,
they may have problems working with even more complex
ciphers such as the ones used in modern communications.
This may be a limitation of the recurrent neural network
model, as it learns slowlier than the standard feedforward
one and therefore is not able to undergo many training

11



Improving the Performance of Unitary Recurrent Neural Networks and Their Application in Real-life Tasks

Higher is better

(a)

Lower is better

(b)

Higher is better

(c)

Lower is better

(d)

Fig. 14: Results of the unitary implementation (EURNN) and the LSTM model on decrypting Vigenère and Autokey,
performed with a learning rate of 0.0005. The unitary configuration used hidden layer size of 128, depth of 8, and the
complex domain for weights. The LSTM configuration used hidden layer size of 40 with the same number of parameters.

procedures. Still, based on the performance of the unitary
model, we have discovered an additional use of the concept,
aside from sequential data, in the field of cryptoanalysis.
Although, it might not be able to beat plain feedforward
networks, the unitary approach will still turn into the most
functional RNN model for the task.

VI. CONCLUSION

We presented the optimizations conducted in the imple-
mentation of a novel recurrent network model and provided
results of its application to three real-life tasks: of automatic
text understanding, of speech recognition, and of cryptoanal-
ysis. Based on the results on the standard benchmarks, our
implementation improves over the time performance of the

original by at least 20%, reaching its best of 15 times better,
reduces the runtime memory usage, and retains the accuracy
of Jing et al.’s model. Based on the real-life task results, the
improved implementation achieves maximum mean accuracy
of around 60% in all of its hyperparameter configurations,
sufficiently beating the commonly used LSTM model on the
automatic text understanding task. On the speech recognition
task, both RNN models struggle to achieve an accuracy over
20% which is quite low for the use case, and presents that
they are not effective solutions for such a problem. However,
still the unitary model is able to show some learning behavior
and completely outperform the LSTM one. Last, on the
cryptoanalysis test, again the unitary model performs with
higher accuracy than the LSTM, reaching 92% on Vigenère

12



Improving the Performance of Unitary Recurrent Neural Networks and Their Application in Real-life Tasks

decryption and 35% on Autokey decryption. This shows it
performs better than the LSTM on these types of tasks,
but it requires much more time and memory resources than
conventional networks which becomes one of its limitations.

Overall, the conducted tests show that the unitary model
can successfully be introduced to more real-life problems
and replace some of the currently used RNN models.

As future work we plan on improving the structure of
the lightweight decomposition model avoiding the increase
in computational time, further decreasing time and memory
consumption by using lighter operations, and applying the
concept of the unitary matrix in Recurrent Highway Neural
Networks known for their higher capabilities in dealing with
more complex tasks.

VII. ACKNOWLEDGMENTS

I would like to thank my research mentor, Li Jing, the
Research Science Institute 2017 staff and participants, the
High School Student Institute of Mathematics and Informat-
ics, and America for Bulgaria Foundation for making the
development of this project possible.

The current research was initiated during the summer
research program Research Science Institute hosted in the
Massachusetts Institute of Technology. It was performed in
the Department of Physics in cooperation with Prof. Marin
Soljačic’s Deep Learning research group and was supported
with their computational resources.

REFERENCES

[1] M. A. Nielsen. Neural Networks and Deep Learning. Determination
Press, 2017.

[2] V. G. Maltarollo, K. M. Honório, and A. B. F. da Silva. Applications
of artificial neural networks in chemical problems. In Artificial neural
networks-architectures and applications. InTech, 2013.

[3] C. Olah. Understanding lstm networks. http : / /
colah.github.io / posts / 2015 - 08 - Understanding -
LSTMs/, 2015.

[4] S. Hochreiter. Untersuchungen zu dynamischen neuronalen netzen.
Diploma, Technische Universität München, 91, 1991.

[5] L. Jing, Y. Shen, T. Dubček, J. Peurifoy, S. Skirlo, M. Tegmark, and
M. Soljačić. Tunable efficient unitary neural networks (eunn) and their
application to rnn. arXiv preprint arXiv:1612.05231, 2016.

[6] S. Miller. Mind: How to build a neural network (part one). https:
//stevenmiller888.github.io/mind-how-to-build-
a-neural-network/. Accessed: 2017-07-28.

[7] D. Britz. Recurrent neural networks tutorial, part 1 introduction
to rnns. http://www.wildml.com/2015/09/recurrent-
neural-networks-tutorial-part-1-introduction-
to-rnns/, 2015.

[8] M. Henaff, A. Szlam, and Y. LeCun. Orthogonal rnns and long-
memory tasks. arXiv preprint arXiv:1602.06662, 2016.

[9] S. Ruder. An overview of gradient descent optimization algorithms.
arXiv preprint arXiv:1609.04747, 2016.

[10] Y. Bengio, P. Simard, and P. Frasconi. Learning long-term dependen-
cies with gradient descent is difficult. IEEE transactions on neural
networks, 5(2):157–166, 1994.

[11] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural
computation, 9(8):1735–1780, 1997.

[12] M. Arjovsky, A. Shah, and Y. Bengio. Unitary evolution recurrent
neural networks. pages 1120–1128, 2016.

[13] S. Wisdom, T. Powers, J. Hershey, J. Le Roux, and L. Atlas. Full-
capacity unitary recurrent neural networks. pages 4880–4888, 2016.

[14] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, and C. C. et al.
TensorFlow: Large-scale machine learning on heterogeneous systems,
2015. Software available from tensorflow.org.

[15] A. Genz. Methods for generating random orthogonal matrices. Monte
Carlo and Quasi-Monte Carlo Methods, pages 199–213, 1998.

[16] J. Weston, A. Bordes, S. Chopra, A. M. Rush, B. van Merriënboer,
A. Joulin, and T. Mikolov. Towards ai-complete question answering: A
set of prerequisite toy tasks. arXiv preprint arXiv:1502.05698, 2015.

[17] A. Graves, G. Wayne, M. Reynolds, T. Harley, I. Danihelka,
A. Grabska-Barwińska, S. G. Colmenarejo, E. Grefenstette, T. Ra-
malho, J. Agapiou, et al. Hybrid computing using a neural network
with dynamic external memory. Nature, 538(7626):471–476, 2016.

[18] P. Warden. launching the speech commands dataset. Google Research
Blog, 2017.

[19] S. Greydanus. Learning the enigma with recurrent neural networks.
arXiv preprint arXiv:1708.07576, 2017.

13

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://stevenmiller888.github.io/mind-how-to-build-a-neural-network/
https://stevenmiller888.github.io/mind-how-to-build-a-neural-network/
https://stevenmiller888.github.io/mind-how-to-build-a-neural-network/
http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1 -introduction-to-rnns/
http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1 -introduction-to-rnns/
http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1 -introduction-to-rnns/

	Introduction
	Background
	The Artificial Neural Network
	The Concept of Recurrence
	Backpropagation and Gradient Descent
	The Long-Term Dependencies Problem and Long Short Term Memory (LSTM) Networks
	The Concept of the Unitary Matrix

	Optimizations
	Implementing Parallelization
	Reducing Operations Complexity
	Expanding Hyperparameter Range

	Benchmark and Analysis
	Tests on Problems from Real Life
	Reading Comprehension: The bAbI Dataset
	Speech Recognition
	Cryptoanalysis

	Conclusion
	Acknowledgments
	References

