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Abstract: This paper provides a comparison between metaheuristic algorithms, designed to find solutions
of the Graph Coloring Problem. Such comparison can only be found in a generalized form without any detailed
information. A Genetic Algorithm, an Ant Colony Optimization Algorithm, a Simulated Annealing Algorithm, and
a Tabu Search Algorithm have been implemented, optimized and evaluated on standard tests, created by the
Center for Discrete Mathematics and Theoretical Computer Science (DIMACS). The goal of the research is to
contribute with a detailed comparison and analysis of the results.
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Introduction
The Graph Coloring Problem is an NP-hard problem that requires the vertices of a graph

to be assigned colors, such that there are no neighboring vertices with the same color and
a minimum number of colors is used. Solutions are found using approximation algorithms,
which are algorithms that aim to find a good enough solution in a realistic time interval, rather
finding the optimal solution. The research provides a comparison between some of the most
popular algorithms from the class of the approximation algorithms.

Genetic Algorithm
The implemented Genetic Algorithm is based on the approach designed by Reza Ab-

basian and Malek Mouhoub [1].

Architecture
The proposed architecture of parallelization utilizes the island parallel architecture, which

consists of logically separated groups of master-slave processes, called islands. This model
is effective in systems with many processing cores because a big number of solutions can
be processed at once.

Solution Finding Process
The solution finding process begins by executing an estimator module that provides an

upper boundary k for the chromatic number. Subsequently the algorithm searches for a
solution with k-1, k-2, etc. colors. If the algorithm is unable to find a solution with less colors,
it returns the last solution found.
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Reproduction and Crossover
For the process of reproduction an arbitrary 30% of the fittest individuals and an arbi-

trary 10% of the remaining population are selected. The reproduction is completed using
crossover in which two parents are selected and their genes, separated by crossover points,
are mixed to create a new individual that replaces an arbitrary individual from the existing
population.

Mutation
The algorithm includes two types of mutation. In the first type, the colors of a randomly

chosen part of a solution are changed with arbitrarily generated colors. In the second type,
the conflicts in a solution are alleviated by changing one of the colors in the conflicting pair with
an arbitrary color. All individuals have an equal chance for being selected for mutation. From
each generation 20% of the population is selected for mutation and 10% of the chromosome
is altered. The first type of mutation is performed in 33% of the cases and the second type -
in 66% of the cases.

Genetic Modification
The algorithm includes a Genetic Modification Module that generates new artificial indi-

viduals. The Module orders the vertices by their dependency level and colors them using a
greedy algorithm. The generated individuals are then inserted into the population.

The Estimator Module
The Estimator Module works by coloring the ordered by degree vertices using a greedy

algorithm. The greedy algorithm is similar to the one used in the Genetic Modification Module.
The goal of the estimator is to quickly determine an upper boundary, which limits the number
of calculations.

Modifications to the Algorithm
In order to keep the algorithm consistent with the original idea, there are nomajor changes

in its structure. An important optimization we made was to change the parallelization model
from the island parallelization architecture to the master-slave parallelization architecture.
This was due to the small amount of processing cores available.

Ant Colony Optimization Algorithm
The implementation of the Ant Colony Optimization Algorithm is based on the publication

of Daniel Costa and Alian Hertz [2].

Pheromone Trails
An important part of the algorithm are the pheromone trails left by the ants. In this case,

they are represented by a table. In row x and column y of the table, the average fitness of all
explored solutions where vertex x and y are in the same color is stored. The mathematical
equation for this action is presented in Figure 1.
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Figure 1: Updating the pheromone table

The Main Algorithm
The ant-colony optimization algorithm is divided into two parts. The first part is the main

algorithm. Upon initialization, the values in the pheromone table are set to 1, indicating equal
presence of pheromones. On each cycle, the graph is colored with the greedy algorithm
Recursive Largest First (RLF). If a better solution is found, it is stored. After each step, the
pheromone table is updated and 0.5% of the pheromones evaporate, eliminating the effect
of older solutions. After a particular number of iterations, the algorithm stops and returns the
best solution found.

The Recursive Largest First (RLF) Algorithm
The RLF algorithm is a greedy algorithm that quickly colors the graph based on the

pheromone table. Upon initialization the algorithm selects a vertex v from the set W, con-
taining vertices that can be colored with a color q. The selected vertex is inserted in the set
Vq, that includes vertices that can be colored with the color q. Then until the setW is empty,
the algorithm adds the adjacent vertices of v into the set B, consisting of vertices, that can
not be colored with the color q. After that another vertex v is selected from W, based on
the pheromone table, and the process repeats. When W is empty, the vertices from B are
moved toW and B is cleared. Then the process repeats for the color q+1 and continues until
all the vertices are colored.

Parallelization Model
As in the original approach, no parallelization techniques are used, in this implementation

the master-slave parallelization model is used. The model includes one main process that
collects the solutions and maintains the pheromone table and a number of slave processes
that represent the ants that color the graph.

Simulated Annealing Algorithm
The implementation of the Simulated Annealing Algorithm is based on approach designed

by Szymon Łukasik, Zbigniew Kokosiński, and Grzegorz Świętoń [4].

Original Approach
The proposed algorithm takes the chromatic number of a graph and finds a suitable col-

oring for it. It follows the master-slave parallelization model. The master process collects
solutions from the slave processes and stores the best solution found. Each slave process
starts with its own randomly generated solution and improves it using the simulated anneal-
ing technique. Then it sends it to the master. After a certain number of iterations, slave
processes receive the best solution found up to that moment from the master and start im-
proving it independently. The algorithm stops after a certain number of iterations or if a better
solution can not be found.
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Annealing and Temperature

An important process in improving the solutions is the process of annealing. During this
process, an unfit solution can replace a better one in order to evade remaining in a local
minima. The probability P of accepting the unfit solution depends on the temperature value
of the algorithm. It is calculated via the exponential formula, presented in Figure 2. The
temperature value of the algorithm decreases periodically after a certain number of iterations.

Figure 2: The function for evaluating the probability P

Optimizations
The original algorithm finds a solution for a particular chromatic number k. In order to

adapt the algorithm for the problem in the general case, an estimator module was included
and the way for finding solutions was changed.

Estimator

The estimator module is used to find an upper boundary for the chromatic number which
will limit the number of calculations of the algorithm. Due to the satisfactory performance of
the estimator proposed by Resa Abbasian and Malek Mouhoub, their model was adopted. It
is described in detail in the section Estimator.

Finding Solutions

In the modified solution finding process, each slave process finds an upper boundary
for the chromatic number using the estimator module and tries to lower it by improving the
current solution. In specific intervals, each slave process sends its best solution up to that
moment to the master and receives the best found among all processes. Then it continues
its own work with the new solution. These steps repeat for a fixed number of iterations and
then the algorithm returns the best solution found.

Tabu Search
The implementation of the Tabu Search Algorithm is based on the research of Alian Hertz

and Dominique de Werra [3].

Original Approach
Upon initialization, a solution is generated on a random principle. Then it undergoes the

process of improvement for certain number of times. The process consists of three main
parts. First, a fixed number of neighboring solutions, not members of the tabu list, are gen-
erated. The best one among them is chosen; it replaces the current one and is inserted in
the tabu list. After a certain number of iterations, the algorithm ends its work and returns the
best solution found.
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Generating Neighbor Solutions

The process of generating neighbor solutions is performed by changing the color of ex-
actly one vertex from the given solution. In this way, the new solution is different from the old
one, but still remains close to it which ensures that no solution would be missed.

Tabu List

The tabu list is a list of solutions, that can not be accessed by the algorithm. In this way,
the algorithm would not remain in a local minima and will examine more solutions. After a
solution replaces the current one, it is inserted in the tabu list and remains there for a certain
number of iterations. In the original algorithm the value has been experimentally calculated
to be 7 iterations.

Optimizations
The original approach is made for execution in series and finds a solution based on a

chromatic number. In order to adapt it to the general case of the problem, the solution finding
had to be altered and a parallelization technique had to be implemented.

Estimator

Based on the satisfactory performance of the estimator, presented in the approach of
Resa Abbasian and Malek Mouhoub, it was adopted in the Tabu Search Algorithm. The
estimator is explained in greater detail in the section Estimator.

Parallelization Scheme

In order to test amaximumnumber of solutions, a semi-autonomous parallelization scheme
was selected. It includes semi-autonomous processes of the algorithm that exchange data
over a certain interval. In the beginning, n processes of the Tabu Search algorithm are exe-
cuted and generate their own initial solution. Then they improve that solution and at certain
intervals send their best solution to the master process. The master process distributes that
solution to all other processes and in this way prevents a process from remaining in a lo-
cal minima. The time interval allows a greater level of independence when testing solutions
which enables more solutions to be tested.

Results and Analysis

Tests on x86 Processors by Intel
Tests of the algorithms on standard x86 processors by Intel: Intel Core i3 6098P@3.6GHz

with 4 threads and Intel Core i7 4790K@4.0Ghz with 8 threads are presented below. All tests
were performed using OpenMPI under GNU/Linux.
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Test Vertices Edges Chromatic
number Algorithm Threads Answer Time

myciel7.col 191 2360 8 Genetic 4 8 1:16s
myciel7.col 191 2360 8 Genetic 8 8 33.9s
myciel7.col 191 2360 8 Ant colony 4 8 2.7s
myciel7.col 191 2360 8 Ant colony 8 8 2s

myciel7.col 191 2360 8 Simulated
annealing 4 8 0.5s

myciel7.col 191 2360 8 Simulated
annealing 8 8 0.4s

myciel7.col 191 2360 8 Tabu search 4 8 6.8s
myciel7.col 191 2360 8 Tabu search 8 8 4s
queen7_7.col 49 476 7 Genetic 4 9 6s
queen7_7.col 49 476 7 Genetic 8 9 2.6s
queen7_7.col 49 476 7 Ant colony 4 8 0.2s
queen7_7.col 49 476 7 Ant colony 8 7 0.16s

queen7_7.col 49 476 7 Simulated
annealing 4 9 0.5s

queen7_7.col 49 476 7 Simulated
annealing 8 8 0.6s

queen7_7.col 49 476 7 Tabu search 4 8 1.9s
queen7_7.col 49 476 7 Tabu search 8 8 1.1s

Tests on System-on-Chip (SoC) devices
Tests of the algorithms on System-on-Chip devices with ARM processors and an Intel

Atom N455 processor are presented below. All tests were performed using OpenMPI under
GNU/Linux.

Test Vertices Edges Chromatic
number Board Threads Answer Time

myciel6.col 95 755 7 Raspberry Pi 3 4 7 1.8s
myciel6.col 95 755 7 Parallella ARM CPU 2 7 2.2s

myciel6.col 95 755 7 Parallella
Epiphany CPU 16 7 56s

myciel6.col 95 755 7 Intel Atom N455 2 7 1.8s
queen7_7.col 49 476 7 Raspberry Pi 3 4 8 0.5s
queen7_7.col 49 476 7 Parallella ARM CPU 2 8 0.8s

queen7_7.col 49 476 7 Parallella
Epiphany CPU 16 9 6s

queen7_7.col 49 476 7 Intel Atom N455 2 9 0.5s
huck.col 74 301 11 Raspberry Pi 3 4 11 1s
huck.col 74 301 11 Parallella ARM CPU 2 11 0.3s

huck.col 74 301 11 Parallella
Epiphany CPU 16 11 31s

huck.col 74 301 11 Intel Atom N455 2 11 1s

Analysis of the Results
Analysis of the Results of Intel CPUs

The results from the conducted tests indicate that all algorithms find a solution for less
than two minutes. The answers, that are found, are close to the chromatic numbers of the
graphs in the test cases. In particular, it can be observed that the Genetic Algorithm has
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a longer execution time compared to the other algorithms. However, it examines more so-
lutions, which gives it a bigger chance of finding the chromatic number. The Ant Colony
Optimization algorithm has a shorter execution time compared to the other algorithms and a
higher success rate in finding the answer. However, due to the greedy algorithm that con-
ducts the coloring, the Ant Colony Optimization algorithm can prove inefficient in a specific
type of graphs. The Simulated Annealing algorithm also has a short execution time com-
pared to the other algorithms. However, it relies on an estimation of the upper boundary. If
the estimator gives a higher upper boundary, the algorithm will have a smaller chance to find
the chromatic number. The Tabu Search algorithm has a longer execution time than the Ant
Colony Optimization algorithm and the Simulated Annealing algorithm, but shorter than the
execution time of the Genetic Algorithm. It also has high efficiency in finding the answer. It
relies on an upper boundary, but it can easily be lowered by the algorithm itself, which makes
it more efficient than the Simulated Annealing algorithm in certain cases.

Analysis of the Results of the System-on-Chip (SoC) Devices

In order to compare the efficiency of the algorithms on System-on-Chip devices the Ant
Colony Optimization algorithm, as the one requiring the least resources, was adapted for
execution on some System-on-Chip (SoC) devices. With this, it was presented that these
algorithms can also be executed on mobile devices and achieve high efficiency.

Although its computing power and processing cores are more than the other devices’,
the Epiphany CPU of the Parallella board has worse performance than the other processors.
This is due to the very low read and write speed in the RAM memory of the board. However,
the algorithm gives the right answers and is parallelized properly on all 16 cores.

Conclusions and Future Work
In this research, four parallel metaheuristic algorithms which solve the graph coloring

problem were developed. Presented are authentic implementations of a Genetic Algorithm,
an Ant Colony Optimization algorithm, a Simulated Annealing algorithm, and a Tabu Search
algorithm. Based on the results, shown above, these algorithms have high efficiency in solv-
ing the graph coloring problem for a reasonably short time interval. This demonstrates the
advantages that parallel algorithms have in solving the graph coloring problem.

Areas for future work in this research include:

• Further optimizations of the authentic implementations

• Research and implementation of the Parallel Swarm Optimization algorithm

• Research and implementation of the Gravitational Search algorithm
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